让GUI智能体不再「过度执行」,上海交大、Meta联合发布OS-Kairos系统
让GUI智能体不再「过度执行」,上海交大、Meta联合发布OS-Kairos系统本文第一作者是上海交通大学计算机学院三年级博士生程彭洲,研究方向为多模态大模型推理、AI Agent、Agent 安全等。通讯作者为张倬胜助理教授和刘功申教授。
本文第一作者是上海交通大学计算机学院三年级博士生程彭洲,研究方向为多模态大模型推理、AI Agent、Agent 安全等。通讯作者为张倬胜助理教授和刘功申教授。
自从 Transformer 问世,NLP 领域发生了颠覆性变化。大语言模型极大提升了文本理解与生成能力,成为现代 AI 系统的基础。而今,AI 正不断向前,具备自主决策和复杂交互能力的新一代 AI Agent 也正加速崛起。
Agent Infra是AI时代的新热点,涉及为Agent重建基础设施以适应其与人类的根本差异,包括交互方式、学习模式、责任界定等。核心是创建安全环境如E2B沙盒和Browserbase浏览器工具,支持Agent反馈循环和多任务协作,预计Browser Use市场将大幅增长,开发者需聚焦差异场景提升价值。
这是我关于「AI Native 系列」的第二篇文章,主题是:行动闭环。在上一篇里,我讲了什么样的产品才算得上真正的 AI Native,分享了我对 MCP 协议、AI 架构原生性和任务闭环的理解。
Agent 成为新一轮创新叙事的中心坐标。在技术边界不断推进的同时,一个显著的变化也在悄然发生:AI 创业从「拼技术」进入到「拼交付」时代。
2025年已成为名副其实的Agent元年。 不论是Operator、Manus、Genspark等爆款Agent的相继出现,还是各大厂商陆续发布MCP协议支持,种种迹象都在印证着AI Agent正经历从“玩具”到“工具”的关键转折。
MyShell 自从进入 ShellAgent 的框架阶段,由于深度融合了 ComfyUI 生态,图像视频流的 Agent 迎来了井喷式的爆发。上个月据说上新了 150+个,竞争确实有点激烈了。但其实图像视频流的能力并不代表 ShellAgent 所能做的全部可能性,仍然有大量值得探索的场景等待创作者去尝试。
2025年,随着 Agent 应用在千行百业加速落地,Agent 应用开发的实际需求和痛点也正在发生变化。
大家好,我是歸藏(guizang),今天给大家带来 Kimi 的深度研究能力体验和介绍。
这款 Agent 擅长多轮搜索和推理,平均每项任务执行 23 个推理步骤,访问超过 200 个网址。它是基于 Kimi k 系列模型的内部版本构建,并完全通过端到端智能体强化学习进行训练,也是国内少有的基于自研模型打造的 Agent。